
COMS E6998 UNIX Reflection

Avery Blanchard,1, ∗ Angela Peng,1, † and Shuo Liu1, ‡

1Columbia University

With the publication of Dennis M. Ritchie and Ken Thompson’s 1974 paper, The UNIX Time-
Sharing System,[1] the field of computer science changed. To quote the selection committee that
awarded Ritchie and Thompson the Turing award in 1983, ”The genius of the Unix system is its
framework, which enables programmers to stand on the work of others.” [2] UNIX provided an
elegant solution that led to enormous developments in computer hardware, software, networking,
and security. [3] The UNIX Time-Sharing System paper is an undeniable classic with immense
impact. In this paper, we explore the work presented by Ritchie and Thompson over fifty years ago
and illustrate how UNIX shaped the field of computer science.

I. INTRODUCTION

In 1974, Dennis Ritchie and Ken Thompson pub-
lished the paper ”The UNIX Time-Sharing System”.
[1] The ideas presented in the paper are ubiquitous
in modern systems and programming philosophies.
In the paper, Ritchie and Thompson describe the
central ideas of UNIX – the file system and the
shell. The ideas presented by Dennis Ritchie and
Ken Thompson through the development of UNIX
are ubiquitous in modern systems and programming
philosophies. Following our presentation of UNIX as
a classic work in computer science, we write this pa-
per as a reflection on UNIX’s core ideas and lasting
impact.

II. ABOUT THE AUTHORS

Dennis Ritchie and Ken Thompson published
UNIX Time-Sharing System[1] in 1974. The two
worked together on numerous projects throughout
their careers at Bell Labs. In 1983, Ritchie and
Thompson won the Turing Award 1983 for their
work on UNIX.[2] Together, they also were awarded
the Hamming Medal in the 1990s[2], the National
Medal of Technology[4], and the Japan Prize for
Information and Communication in May 2011[2].
Ritchie and Thompson are prolific within computer
science. In this section, we explore their background
and accolades.

A. Dennis M. Ritchie

Dennis Ritchie was born in New York in Septem-
ber 1941.[2] He received his bachelor’s degree in

∗ agb2178@columbia.edu
† ap4042@columbia.edu
‡ sl4921@columbia.edu

physics and graduate degrees in applied mathemat-
ics from Harvard University in 1963 and 1967.[2]
During his time at Harvard, Ritchie proclaimed:
“My undergraduate experience convinced me that
I was not smart enough to be a physicist and that
computers were quite neat. My graduate school ex-
perience convinced me that I was not smart enough
to be an expert in the theory of algorithms and also
that I liked procedural languages better than func-
tional ones.”[5] During his graduate studies, Den-
nis Ritchie began working part-time at Bell Labs on
the MULTICS project in 1967. And in 1968 he de-
fended his dissertation, ”Computational Complexity
and Program Structure”[6], advised by Patrick C.
Fischer.

Dennis Ritchie joined Bell Labs full-time after
completing his graduate studies. [2] During his time
there, Ritchie worked on numerous projects, such as
MULTICS, B, BCPL, C, UNIX, and ALTRAN. [2]
Ritchie co-authored ”The C Programming Language
Book” with Brian Kernighan – which remains a cen-
tral part of modern computer science education.

Dennis Ritchie died on October 12, 2011, at 70
years old. [5] As historian Paul Ceruzzi stated on
his death, ”His name was not a household name at
all, but. . . if you had a microscope and could look in
a computer, you’d see his work everywhere inside.”
[4]

B. Ken Thompson

Ken Thompson was born in Louisiana on Febru-
ary 4th, 1943. [7] Thompson received his bachelor’s
and master’s degrees in computer science and elec-
trical engineering from the University of California,
Berkeley in 1965 and 1966. [7] In 1966, Thompson
started working at Bell Labs. Thompson is known
for his work on MULTICS, UNIX, B, a chess ma-
chine named Belle, UTF-8, Plan 9, Inferno, grep,
endgame tablebase (a database of chess endgame po-
sitions), and the Go programming language.[7]

mailto:agb2178@columbia.edu
mailto:ap4042@columbia.edu
mailto:sl4921@columbia.edu

2

FIG. 1. Ken Thompson and Dennis Ritchie (seated)
working at the PDP-11

III. BACKGROUND

In this section we will briefly define the role of
an operating system and explore a brief history of
operating systems.

A. Operating System Basics

An Operating System provides an interface be-
tween hardware and software. The purpose of the
system is to control a machine’s hardware and log-
ical resources. [8] The development of modern op-
erating systems would shift the way computers were
used.

B. A Brief History of Operating Systems

In the 1960s, Bell Labs introduced the multi-
plexed information and computing service (MUL-
TICS) as a time-sharing operating system with MIT
and General Electric. [9] MULTICS’s design in-
cluded a supervisor program that managed hardware
resources (using symmetric multiprocessing multi-
programming and paging), a segmented memory ad-
dressing system supported by the hardware, a tree-
structured file system, device support, 100s of com-
mand programs, 100s of user callable library rou-
tines, operational and support tools, and documen-
tation. [9] MULTICS combined ideas from other op-
erating systems with the inclusion of some innova-
tions. [9] It aimed to change the way people used
and worked with computers. [9] Bell Labs withdrew
from the project in 1969. [10]
In the 1970s, Bell Labs developed UNIX as an al-

ternative to MULTICS. This effort was led by Dennis
Ritchie and Ken Thompson. Apple’s disk operating
system, Apple DOS, was also released in 1988 for
the Apple II. [11] The operating system was quickly
discontinued in 1983. cite[11]

In the 1980s, the Microsoft DOS and NeXTStep
operating systems were introduced. Microsoft
bought 86-DOS from its creator Tim Patterson for
seventy-five thousand dollars in 1986. [12] 86-DOS
was renamed as MSDOS and within the year Mi-
crosoft licensed this software to over seventy com-
panies. [12] NeXTStep is a UNIX-based operating
system that was released in the late 1980s. [13]

In the following decade, Linus Torvalds released
LINUX. LINUX is a free and open-source operating
system based on a descendant of UNIX as a master’s
student at the University of Helsinki. [14] Microsoft
also released Windows 3.0 to replace MSDOS. [12]

In the 2000s, Apple’s UNIX-based operating sys-
tem, MacOS, was released.

Over the decades since UNIX, there were numer-
ous operating systems released. Many of these sys-
tems were based on the innovative core ideas pre-
sented by Ritchie and Thompson in 1974.

IV. UNIX ORIGINS

After the Bell Labs decision in 1969 to leave the
MULTICS project, Dennis Ritchie and Ken Thomp-
son began looking for alternatives. During this time,
Ritchie and Thompson submitted unsuccessful sev-
eral proposals.[10] However, in 1969, Ritchie and
Thompson designed the UNIX file system.[10]

A. UNIX and the C Programming Language

The C programming language was designed in the
early 1970s in parallel with UNIX. MULTICS was
written in the B programming language. UNIX and
C were designed in parallel to address the problems
observed when using B. [15] In the implementation
of B there are no types, everything was a word. [15]
Other problems included the single datatype of the
hardware machine word, the lack of floating point
arithmetic, and the way pointers were handled.[15]
In B, each pointer generated a run-time scale conver-
sion from the pointer to the byte address expected by
the hardware.[15] UNIX was the most central factor
in the success of the C language and C allowed for
UNIX’s hardware independence and probability.[3]

3

B. UNIX and Hardware

As UNIX was written in C rather than assem-
bly, it was a hardware-independent operating sys-
tem. This allowed for UNIX’s portability and acces-
sibility, which ultimately led to its prominence. [3]
UNIX was an OS for inexpensive hardware.
UNIX originated from Bell Labs’ need to develop

an alternative to MULTICS. Ritchie and Thompson
aimed to innovate upon the goals of MULTICS. The
C programming language was developed to address
the shortcomings of B. C enabled UNIX’s hardware
independence. The origins of UNIX vastly impacted
computer science. The rest of the paper will de-
scribe the central ideas of the 1974 paper authored
by Ritchie and Thompson and their impact on com-
puter science.

V. UNIX FILE SYSTEM

A. Features

The Unix file system boasts numerous beneficial
features and advantages, distinguishing it from other
operating systems during that era. For example, Ta-
ble. I provides a comparison that shows the major
difference between the file system of Unix and Win-
dows OS.

Feature Unix Windows

File naming Case-sensitive Case-insensitive

Directory structure Hierarchical Tree

File permissions Granular More granular

Path separators / \
Links Symbolic links Symbolic links&joint points

Drivers Normal Wider-range

TABLE I. Comparison of Unix and Windows file systems

File Types
The Unix file system incorporates 3 fundamental

file types:
1. Ordinary files, the most common file type found

on Linux systems, hold text, data, or program in-
structions. They encompass a wide variety of for-
mats, like text files, image files, compressed files,
and binary files.

2. Special files also exist within the Unix file system:

(a) Device files, known as ”blocks,” provide
buffered access to system hardware compo-
nents, while ”character files” offer unbuffered
serial access to the same components. Char-
acter files transfer data one character at a
time, whereas block files can transmit large
data chunks simultaneously.

(b) A symbolic link serves as a pointer to another
file or directory within the system, which can
be either a regular file or a directory.

(c) Pipes are file-based channels that enable
inter-process communication by connecting
the output of one process to the input of
another. Conversely, sockets facilitate data
and information exchange between processes
operating on different machines across a net-
work.

3. Directories represent rooted tree structures in the
file system that house ordinary files and special
files.

Detachability
One of the key attributes of the Unix file system

is its detachability. Although the root of the file sys-
tem is consistently stored on a specific device, the en-
tire file system hierarchy is not required to reside on
that same device. For example, the ”mount” com-
mand can reroute references from a standard file to
the root directory of the file system on a detachable
volume.

Several benefits arise from having a detachable file
system. First, it allows for the storage of more data
using portable and easily transportable media. Re-
movable media is often faster and more convenient
to transfer than internal hard drives, as it eliminates
the need for cables or connections between devices.
Furthermore, detachable file systems generally do
not necessitate specialized software or drivers, mak-
ing them ideal for sharing files across multiple de-
vices.

Reliability
An important aspect of the Unix file system is

its reliability. Each user on the system receives a
unique user ID, which is assigned to any file they
create. Unix allocates 7 protection bits to each new
file, with 6 of these bits independently controlling
read, write, and execute permissions for both the
file’s owner and all other users. The last one func-
tions as an indicator; when enabled, it temporarily
changes the creator ID to the current user. This user
ID modification is effective only during the execution
of the program that necessitates it. The set-user-ID
feature enables privileged programs to prevent unau-
thorized access by non-superusers.

The MOO accounting problem, inspired by the
MOO game, illustrates that the Unix file system pro-
tects files by distinguishing between superusers and
ordinary users. In this game, users can only modify
their score files by playing the game or executing the
relevant program, thereby preventing ordinary users
from tampering with specific files. Furthermore, the
set-user-ID mechanism provides flexibility by allow-
ing users to execute carefully crafted commands that

4

require privileged system access. A prime example
of this is the widely used ’sudo’ command.

Inodes
Inodes are a fundamental aspect of the Unix file

system, offering a distinct method to oversee and
access files. As a critical data structure, they store
vital information about files, including size, permis-
sions, ownership, and data block locations on the
storage device. Through inodes, Unix facilitates ef-
ficient insertion and removal of storage units, as well
as versatile file management.
Upon creating a file in Unix, an inode is assigned

to store its metadata. The inode id, a unique identi-
fier, enables the file system to locate and access the
file’s data blocks on the storage device. This indirect
file referencing through inodes, rather than directly
by their names, presents numerous benefits. It sup-
ports hard links, which allow multiple filenames to
reference the same inode and share identical data,
and streamlines renaming or relocating files within
the file system.
Regarding the insertion and removal of storage

units, Unix’s inode-focused approach offers signifi-
cant flexibility. To insert a new storage unit, the file
system simply allocates new inodes and data blocks
on the added device. In contrast, to remove a storage
unit, the file system must ensure that the associated
inodes and data blocks are transferred to another
storage unit if needed. This method enables Unix to
effectively manage storage resources while preserv-
ing the file system’s overall integrity.

B. I/O Calls and Locking

In Unix, the file system does not enforce any
visible user locks or limitations on the number of
users accessing a file for reading or writing. Unix’s
creators argue that traditional locking mechanisms
are inadequate for preventing interference among
users accessing the same file. While large, single-
file databases managed by independent processes are
rare, standard locks fail to prevent confusion when
multiple users edit a file using an editor that creates
a file copy.
Various Unix variants offer distinct file-locking

mechanisms, with fcntl being the most widespread.
Using fcntl, diverse lock types can be applied to spe-
cific sections or the entire file. Multiple processes
may hold shared locks, while only one process can
possess an exclusive lock, which is not able to ex-
ist with a shared lock together. In order to obtain
a shared lock, one process must be frozen until no
processes maintain an exclusive lock. On the con-
trary, the process must also wait until there are no

processes that hold either lock type to secure an ex-
clusive lock.

Locks generated by flock persist across forks, mak-
ing them advantageous in forking servers. Conse-
quently, multiple processes can maintain an exclu-
sive lock on the same file if they share a filial con-
nection, and the exclusive lock was originally estab-
lished in one process before being replicated by a
fork.

Nonetheless, failures may still arise when reading
and writing occur sequentially. If the read pointer
is too near the file’s end, such that reading a spe-
cific number of characters surpasses the end, only
enough bytes will be transferred to reach the file’s
end. Moreover, typewriter-like devices will never re-
turn more than a single line of input.

VI. UNIX PROCESS AND SHELL

A. Process

A process is an instance of a running program that
has been loaded into memory and is being executed
by the computer’s CPU. Every process is assigned
a unique process ID (PID) that identifies it within
the system. UNIX treats each process as an inde-
pendent entity and each process has its own address
space, which is used for storing important informa-
tion about the code, the variables used in the pro-
gram, and other important data needed to run a
process smoothly. As you can see from the images

FIG. 2. Running the ps -ef command in the terminal
shows info about all the processes running on the com-
puter

the first column shows the UID of the process, this
indicates which user the process belongs to. In this
case, the root is running the process thus it shows
”root” under the column. The UID can also be the
current user or processing running on behalf of other
applications. The next column is the PID, this as in-
dicated before is unique to every single process run-
ning on the computer, and the first-ever process that
started will have a PID of 1, and is called the init
process. This is the parent of all the future pro-
cesses, we will talk more about this inheritance re-
lationship in the fork section. The PPID is the PID
of the child’s parent ID and as you can see the pro-
cess with PID 2, has a PPID of 1, this means that
its parent has a PID of 1. The next column that is

5

important to understand is the CMD column, this
indicates the command prompt that started the cor-
responding process on the computer. There are a lot
more attributes associated with a process, but these
are the most important and fundamental ones.

B. Images

An image refers to the current state of a computer
program or application, which includes information
like the program’s code, data, and settings. When
a program is executed, it becomes a process that
runs on the computer, using system resources like
memory and CPU time to perform tasks. The image
is the starting point for the process, and it contains
all the necessary information for the program to run
correctly. For example, what time is it when the
process is running? What are the processes that are
running at this moment? What is CPU usage? etc.
The image encapsulates all this essential information
for a process to run smoothly. When a program
is executed, the image is loaded into memory and
becomes a running process. From that point on,
the process can modify the image’s state as needed,
but the original image remains unchanged. In some
cases, multiple processes may share the same image,
allowing them to run more efficiently and conserve
system resources.

C. The fork command

Forking is one of the most important features of
UNIX. It is the way for a new process to be born!
As we have seen in the previous process section, the
process has ”memory” of who their parents are, and
this is because the fork system call tells the child pro-
cess who the parent process is (via the PID), and
informs the parent process what is the child process
created from the system call. More formally, a fork
is a system call that creates a new process by dupli-
cating the calling process. When a fork is executed
by a process, it splits into two independently execut-
ing processes. The two processes have independent
copies of the original core image, which includes the
code and data of the original process, and share any
open files. The new processes differ only in that one
is considered the parent process, and the other is
the child process. The parent process is the process
called the fork system call, while the child process is
the new process that is created by the fork. Control
returns directly from the fork in the parent process,
while control is passed to a specific location (usually
the beginning of the program) in the child process.
The PID returned by the fork call is the identifica-

tion of the other process, which is used to distinguish
between the parent and child processes. Here is a
simple program that demonstrates how the control
flow works with the fork() system call

#include <s t d i o . h>
/∗ f o r p r i n t f () and f p r i n t f () ∗/
#include <s t d l i b . h>
/∗ f o r a t o i () and e x i t () ∗/
#include <s t r i n g . h>
/∗ f o r memset () and strcmp () ∗/
#include <uni s td . h>
/∗ f o r c l o s e () and pipe () ∗/

int main (int argc , char ∗∗ argv)
{

f o rk () ;
p r i n t f (” fo rk1 !\n”) ;
f o rk () ;
p r i n t f (” fo rk2 !\n”) ;
f o rk () ;
p r i n t f (” fo rk3 !\n”) ;
return 0 ;

}
And here is the output of the program

./ h e l l o
f o rk1 !
f o rk2 !
f o rk1 !
f o rk3 !
f o rk2 !
f o rk2 !
f o rk3 !
f o rk3 !
f o rk2 !
f o rk3 !
f o rk3 !
f o rk3 !
f o rk3 !
f o rk3 !

At the beginning of the program, there is a call to
the ‘fork()‘ system call. This creates a new process,
which is a copy of the original process. From this
point on, there are two processes running in parallel,
both executing the same code. The first ‘printf()‘
statement outputs the string ”fork1!”. Since both
processes execute this statement, the string is output
twice.

Then there is another ‘fork()‘ call. This creates
two new processes: one child process of the original
process, and one child process of the first child pro-
cess. The original process and the first child process
continue to execute the code after the ‘fork()‘ call,
while the second child process starts executing at
the same point in the code as the first child process
did.

6

The second ‘printf()‘ statement outputs the string
”fork2!”. Since there are now four processes running
in parallel, all of them execute this statement, and
the string is output four times.
Next, there is a third ‘fork()‘ call. This creates

eight new processes: four child processes of the two
existing child processes, and four grandchild pro-
cesses of the original process. The original process
and the first child process continue to execute the
code after the ‘fork()‘ call, while the second child
process and the four new child processes start exe-
cuting at the same point in the code as the first child
process did.
The third ‘printf()‘ statement outputs the string

”fork3!”. Since there are now eight processes run-
ning in parallel, all of them execute this statement,
and the string is output eight times.
The output of the program is determined by the

number of processes that are created by the ‘fork()‘
calls. Each ‘fork()‘ call doubles the number of pro-
cesses, so after three ‘fork()‘ calls there are eight
processes running in parallel. Each process executes
all the ‘printf()‘ statements in the code, so the out-
put consists of multiple copies of each string. The
exact order in which the strings are output depends
on the timing of the processes, which is determined
by the operating system scheduler. Fork is one of
the most important system calls in UNIX, it allows
the creation of many processes and the myriad func-
tionality of the operating system.

D. pipes

Pipes is another type of system call in UNIX. This
system call allows processes to communicate with
one another. Processes can read or write to another
process via pipes. There are several types of pipes
in UNIX. One directional pipe and two-way pipe.
one directional pipe As the name suggests these

pip can only pass information from process to file, or
from file to process 1. The symbol denoting pipes in
the command line is > and <. The > pipe translates
to human language as ”send the output from the
process on the left of the symbol and feed it into the
file on the right on the symbol”. A simple example
would be echo "hello world" > hello.txt. The
bash code basically writes ”hello world” into the
hello.txt file, and in the context of pipe, we are
basically ”piping” the output of the echo command
into the hello.txt file.
The other type of one-directional pipe is <. This

is used as a command input redirection operator,
which redirects the input of a command to come
from a file instead of the standard input (usually the
keyboard). When the shell encounters the ¡ symbol,

it opens the specified file for reading and sets it as
the standard input for the command to be executed.
This allows the command to read its input from the
file instead of from the keyboard. For example, con-
sider sort < input.txt In this case, the sort com-
mand sorts the contents of the file input.txt, which
is used as input via the ¡ operator. The output of
the sort command is sent to the standard output,
which is usually the terminal screen. Note that the ¡
operator creates a one-way communication channel
from the file to the command, and it is the opposite
of the > operator, which redirects the output of a
command to a file.

bidirectional pipe

As the name indicates, this kind of pipe creates
an undirected pipe between the two processes. The
output from the first command is sent as input to the
second process. The difference between the — and
then > pipes is that the vertical pipe is used between
processes, while the > pipes are used between files
and processes. An example would be ’ls -l — sort -
rnk 5’ This command will list the files in the current
directory and then sort the output in reverse order
based on file size. In this case, the pipe connects the
ls process and the sorting process, piping the output
of ls into the input of the sort.

The pipe() command can also be used in pro-
gramming. The call filep = pipe() opens a file
descriptor and creates a pipe that allows processes
to communicate with each other. The file descriptor
that contains this channel is passed from the parent
to the child via fork(), and thus would allow the
parent process and the child process to communi-
cate with each other and relay information even af-
ter splitting into different processes. However, these
dependencies on inheritance means that a pipe can
not be used an any two random processes, instead,
there has to be some relationship between them.
The modern Linux system, on the other hand, solves
this issue by having a named pipe using a command
named mkfifo. The pip that’s created from this
command allows any two processes that have access
to the name of this pipe to communicate with each
other. We will not go into detail as this is not what
the paper entailed.

E. the execute command

The ‘execute‘ command is a system call in Unix
that allows a program to load and execute another
program. The ‘execute‘ command takes the filename
of the program to execute as its first argument, fol-
lowed by any command-line arguments that should
be passed to the program.

7

When the ‘execute‘ command is executed, the op-
erating system reads the specified program file into
memory and sets up a new process to run it. The
new process inherits the open files, current working
directory, and other system resources from the pro-
cess that executed the ‘execute‘ command. Once the
new process is set up, it begins executing the code
in the specified program file.
Here is an example of using the ‘execute‘ com-

mand in C:

#include <uni s td . h>

int main (int argc , char ∗∗ argv) {
char ∗ args [] = {” l s ” , ”− l ” , NULL} ;
execvp (” l s ” , args) ;
return 0 ;

}

This program executes the ‘ls‘ command with the
‘-l‘ option. The ‘execvp‘ function is used to execute
the ‘ls‘ command with the specified arguments. If
‘execvp‘ is successful, the ‘ls‘ command replaces the
current process, and its output is displayed in the
terminal. If ‘execvp‘ fails, the program returns 0.
Note that the execvp here is one of the variations of
the execute command that UNIX describes.

F. Process Synchronization and Multitasking

The wait command
When a process calls wait, it suspends its oper-

ation until one of its children has finished running.
The wait function will return the PID of the child
who finished running, or return an error if the pro-
cess calling wait() does not have any child. In mod-
ern systems, the wait() system call for the child
process is called waitpid(). Where in this case,
the parent process can specify which child process it
wants to wait for.

The exit command
The exit command, as suggested by its name, ter-

minates the running process and makes it ”exit” the
CPU. More specifically the process’s running image
is destroyed, its opened file descriptors are closed
and its parent is noticed through the wait command
call. If the parent has already terminated when the
child call exit, then the signal will be sent to its
grandparents, or great grandparents and so on. The
process with PID 1 will exist only when the operat-
ing system shuts down, so there will always be some
process running. However, the modern Linux sys-
tem takes a different approach. When a child pro-
cess terminates after the parent process exit, called
an orphan process, the init process will take over

as a parent and call wait() to clean up the child
process.

Putting exit and wait together

#include <s t d i o . h>
#include <s t d l i b . h>
#include <sys / types . h>
#include <sys /wait . h>
#include <uni s td . h>

int main () {
p id t pid ;

pid = fo rk () ;

i f (pid == −1) {
per ro r (” f o rk ”) ;
e x i t (EXIT FAILURE) ;

} else i f (pid == 0) {
/∗ Chi ld proces s ∗/
p r i n t f (”Child proce s s \n”) ;
e x i t (EXIT SUCCESS) ;

} else {
/∗ Parent proces s ∗/
p r i n t f (”Parent p roce s s \n”) ;
wait (NULL) ;

/∗ Wait f o r the c h i l d proces s to complete ∗/
p r i n t f (”Child proce s s completed\n”) ;
e x i t (EXIT SUCCESS) ;

}
}

In this example, the parent process creates a child
process using fork(). The child process prints a mes-
sage and then exits using exit(). The parent process
waits for the child process to complete using wait()
and then prints a message indicating that the child
process has been completed. Finally, both processes
exit using exit(). As you can see the wait and exit
call works together to ensure that all program termi-
nates smoothly and all memories and resources are
recycled when this happens.

Multitasking
Usually, when a process is running, the program-

mer can not do anything else on the shell except
terminate the process. However, a special symbol
& attached to the end of running a process will tell
UNIX ”send the process to run in the background,
and return control to the user”. For example

G. Shell

In 1974 when there was not much nice Graphical
User interface to click around, people used the shell
to interact with the UNIX operating system. The

8

FIG. 3. Adding & at the end of running a program will
send it to the background

user types in a command and then provide input
to communicate with the Operating system what to
do next. However, if a command can not be found
the shell program will prefix a /bin which has all
the commands that users generally employ in their
daily interaction, like ls,cat... etc. The shell is also
responsible for dictating what are the data that goes
into a running program, an what are the data that
comes out as the process is running. As described
earlier in the pipe section we see the > and <. These
are actually the shell program calling pipe() un-
dercover. These shell pipes control the flow of data
between a process and a file descriptor.

Shell initialization
Unix initialization ends with the creation of a sin-

gle process, called the init process as mentioned ear-
lier. The keyboard will have a file descriptor of 1,
while the printer will have a file descriptor of 0. Back
then it was the printer, but now it is the prompt on
the shell screen, also known as the standard output.
After all, these are done, the shell then hangs and
waits for user input. If after receiving a login signal
followed by the correct username and password, the
init process wakes up changes to the user’s default
current directory, sets the process’s user ID to that
of the person loin in, and performs an execute on
the shell. At this point the shell is ready to receive
user input and the login process is completed.

Other processes as Shell
In addition to the normal full-text shell we see as

we open the ”command line” app, another program
can serve as a shell as well. A shell is basically a
front-facing program that allows the user to interact
with the Operating system, thus other shell includes
a text editor, a chess game, and even 3D tic-tac-toe.

VII. IMPACT OF UNIX

The impact of UNIX on the field of computer sci-
ence has been vast. Over fifty years after the devel-
opment of UNIX, the elegant core ideas presented
by Ritchie and Thompson in 1974[1] continue to be

prominent in modern operating systems.

The file system developed by Ritchie and Thomp-
son for UNIX has had a large impact across the field
of computer science. The system view of UNIX had
a unique perspective on files and system structure.
This continues to be prominent in modern operat-
ing systems. The design of the file systems discussed
earlier in this paper represents the core of UNIX’s ar-
chitecture. Ritchie and Thompson’s innovative and
elegant file abstractions continue to have an immense
impact on system design in modern technology.

Since the development of UNIX, there have many
numerous UNIX-based operating systems released.
The descendants of UNIX and their prominence
across various uses from scientific to personal ma-
chines represent a continuation of UNIX and illus-
trate the impact of Ritchie and Thompson’s work.
The direct descendants of UNIX include MacOS, So-
laris, and the BSDs. There are also numerous pop-
ular Linux distributions including Debian, Fedora,
Ubuntu, and more. Linux is used throughout com-
puting, from mobile devices to desktops. [14]

As C and UNIX were developed in parallel, the
prominence of C as a programming language is a
lasting impact of UNIX. [3] C allowed for UNIX’s
hardware-independent design and UNIX solidified C
as the foremost systems programming language.

UNIX expanded the domain of academic research.
The hardware-independent design allowed for larger
accessibility. This accessibility provided the base of
systems-level software that can be used on a variety
of machines, both expensive and inexpensive. The
accessible system of UNIX impacted academic re-
search. This base of systems software that could be
used across universities and institutions would al-
low for results to be tested and verified by others
with more ease. It also allowed for research to have
an accessible base of systems software to build more
software and experiments on top of it. The func-
tionality of UNIX expanded the domain of academic
research, allowing for a newfound ease of testing and
verification of results.

UNIX also impacted modern computer program-
ming. The Turing Award committee discussed this
impact when awarding Ritchie and Thompson the
award in 1983. ”The genius of the Unix system is its
framework, which enables programmers to stand on
the work of others.” [2] UNIX provided a framework
that allowed programmers and researchers to build
upon others’ work. This represented a great shift in
computer science that is evident today. UNIX revo-
lutionized both academics and industry through its
accessibility and innovative framework.

The impact of UNIX is immense and evident.
Ritchie and Thompson changed the field of com-
puter science in 1974. The legacy of UNIX is ev-

9

ident throughout the modern technological land-
scape. From academia to industry, UNIX influ-
enced numerous innovations. In this paper, we pre-
sented UNIX as a classic paper in computer science.
Through exploring its core ideas and its impact on
numerous facets of the field, we feel UNIX’s wor-
thiness as a classic work is clear. After over fifty
years since Ritchie and Thompson presented UNIX,
it would be hard to find a piece of computer science
that has not been impacted by it.

VIII. REFLECTIONS ON THE
PRESENTATION

During our presentation on UNIX, we received
multiple questions. In this section, we will explore
these questions in further detail.

A. Systems Software Research is Relevant

At the conclusion of our presentation, we posed
the question: ”Is Systems Software Research irrele-
vant?” This was in response to Robert Pike’s 2000
paper, ”Systems Software Research is Irrelevant”.
The paper presented a pessimistic view of the state
of software systems research. [16] Pike blames this
on several things such as Microsoft, startups, Unix,
and Linux. For UNIX he claims that UNIX was a
victim of its own success: portability led to ubiq-
uity. [16] This is why we decided to bring Pike’s
paper into this presentation.
Systems software research is a broad area that en-

compasses fields like operating systems, distributed
systems, and more. As for the current state of sys-
tems software research, we argue for its relevance.
Current systems research coming out of academia
involves containerization, virtualization, confidential
computing, and more. Numerous fields rely on se-
cure and reliable software systems to support their
work. The field of systems software research aims to
provide these.

B. Modern Operating Systems

When we presented UNIX as a classic work of
computer science, we were questioned about the cur-
rent state of operating systems. While operating
systems have evolved and innovated since UNIX’s in-
troduction, descendants of UNIX still have the orig-
inal ideas from the 1974 paper at their core. The
shell and the file system presented by Ritchie and
Thompson in 1974 had an immense impact on mod-
ern operating systems. There have been numerous

innovations since UNIX’s introduction that have lent
to the reliability and security of modern operating
systems. While the number of new operating sys-
tems being introduced is small, the main operating
systems continue to cultivate innovation in the field.

Another question we received was if there were any
projects that use operating systems principles. Mod-
ern browsers use similar ideas as operating systems
for isolation and sandboxing to protect privacy and
security. For example, a concurrent browser innova-
tion is the development of WebAssembly (WASM).
WASM is an assembly-like low-level language that
supports the running of multiple programming lan-
guages as a compact and fast binary. [17] This lan-
guage can be run in modern browsers. [17] WASM
uses principles of design a low-level system and ap-
plies them to modern browser design. There are
numerous innovative projects that have been influ-
enced by UNIX’s core design.

In presenting Dennis M. Ritchie and Ken
Thompson’s 1974 paper, The UNIX Time-Sharing
System[1], and its impact on computer science, we
demonstrated its immense influence and status as a
classic work in the field.

IX. CONCLUSION

With the publication of Dennis M. Ritchie and
Ken Thompson’s 1974 paper, The UNIX Time-
Sharing System[1], the field of computer science
changed. The work done by Ritchie and Thompson
on UNIX has had a profound impact on computer
science and has shaped our perspective on systems
and programming. The central ideas of UNIX and
the system’s elegance[2] led to its widespread adop-
tion. In our presentation and this paper, we have
demonstrated why UNIX is a classic work of Com-
puter Science.

10

[1] D. M. Ritchie and K. Thompson, “The Unix Time-
Sharing System,” Communications of the ACM,
vol. 17, no. 7, p. 365–375, 1974.

[2] “Dennis M. Ritchie,” 1983, dennis M. Ritchie -
A.M. Turing Award Laureate. [Online]. Avail-
able: https://amturing.acm.org/award winners/
ritchie 1506389.cfm

[3] “The Good, the Bad, and The Ugly: The
UNIX Legacy,” 2001. [Online]. Available: http:
//doc.cat-v.org/bell labs/good bad ugly/slides.pdf

[4] “Dennis Ritchie,” 1998, national Science and
Technology Medals Foundation. [Online]. Available:
https://nationalmedals.org/laureate/dennis-ritchie

[5] “Dennis M. Ritchie,” 2016, princeton University.
[Online]. Available: https://www.cs.princeton.edu/
∼bwk/dmr.html

[6] D. Ritchie, “Program structure and computational
complexity draft,” 1967, computer History Museum.
[Online]. Available: https://www.computerhistory.
org/collections/catalog/102790971

[7] “Kenneth Lane Thompson,” 1983, kenneth Lane
Thompson - A.M. Turing Award Laureate.
[Online]. Available: https://amturing.acm.org/
award winners/thompson 4588371.cfm

[8] “Coms4118: Introduction to unix.” [On-
line]. Available: http://www.cs.columbia.edu/∼jae/

4118-LAST/L01-unix-intro.html
[9] “MULTICS History,” 1983, multics History. [On-

line]. Available: https://multicians.org/history.
html

[10] “The Evolution of the Unix Time-sharing System*,”
1979. [Online]. Available: https://www.bell-labs.
com/usr/dmr/www/hist.html

[11] “Apple II DOS source code,” 11 2019, cHM.
[Online]. Available: https://computerhistory.org/
blog/apple-ii-dos-source-code/

[12] W. Foundation, “Ms-dos,” 4 2023, wikipedia.
[Online]. Available: https://en.wikipedia.org/wiki/
MS-DOS

[13] ——, “NeXTSTEP,” 3 2023, wikipedia. [On-
line]. Available: https://en.wikipedia.org/wiki/
NeXTSTEP

[14] “The Complete History of Linux,” 2023.
[Online]. Available: https://history-computer.com/
the-complete-history-of-linux-everything-you-need-to-know/

[15] “The development of the C language,” 1993, chis-
tory. [Online]. Available: https://www.bell-labs.
com/usr/dmr/www/chist.html

[16] “Systems Software Research is Irrelevant,” 2000.
[Online]. Available: https://doc.cat-v.org/bell
labs/utah2000/utah2000.pdf

[17] “Webassembly.” [Online]. Available: https:
//developer.mozilla.org/en-US/docs/WebAssembly

https://amturing.acm.org/award_winners/ritchie_1506389.cfm
https://amturing.acm.org/award_winners/ritchie_1506389.cfm
http://doc.cat-v.org/bell_labs/good_bad_ugly/slides.pdf
http://doc.cat-v.org/bell_labs/good_bad_ugly/slides.pdf
https://nationalmedals.org/laureate/dennis-ritchie
https://www.cs.princeton.edu/~bwk/dmr.html
https://www.cs.princeton.edu/~bwk/dmr.html
https://www.computerhistory.org/collections/catalog/102790971
https://www.computerhistory.org/collections/catalog/102790971
https://amturing.acm.org/award_winners/thompson_4588371.cfm
https://amturing.acm.org/award_winners/thompson_4588371.cfm
http://www.cs.columbia.edu/~jae/4118-LAST/L01-unix-intro.html
http://www.cs.columbia.edu/~jae/4118-LAST/L01-unix-intro.html
https://multicians.org/history.html
https://multicians.org/history.html
https://www.bell-labs.com/usr/dmr/www/hist.html
https://www.bell-labs.com/usr/dmr/www/hist.html
https://computerhistory.org/blog/apple-ii-dos-source-code/
https://computerhistory.org/blog/apple-ii-dos-source-code/
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/NeXTSTEP
https://history-computer.com/the-complete-history-of-linux-everything-you-need-to-know/
https://history-computer.com/the-complete-history-of-linux-everything-you-need-to-know/
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html
https://doc.cat-v.org/bell_labs/utah2000/utah2000.pdf
https://doc.cat-v.org/bell_labs/utah2000/utah2000.pdf
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly

	COMS E6998 UNIX Reflection
	Abstract
	Introduction
	About the Authors
	 Dennis M. Ritchie
	 Ken Thompson

	Background
	 Operating System Basics
	 A Brief History of Operating Systems

	 UNIX Origins
	 UNIX and the C Programming Language
	 UNIX and Hardware

	Unix File System
	Features
	I/O Calls and Locking

	UNIX Process and Shell
	Process
	Images
	The fork command
	pipes
	the execute command
	Process Synchronization and Multitasking
	Shell

	 Impact of UNIX
	 Reflections on the Presentation
	 Systems Software Research is Relevant
	 Modern Operating Systems

	 Conclusion
	References

